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Abstract 

Expressions for the electrostatic potential at an inter- 
facial space charge layer are determined using classi- 
cal electrostatics, with particular reference to the use 
of phase-contrast techniques in transmission electron 
microscopy for characterizing such layers. Both the 
sensitivity of the potential to the detailed form of the 
charge distribution and the effect of the internal electric 
field on the strain within the material are discussed. 

I. Introduction 

A space charge layer at a grain boundary in an ionic 
solid (Yan, Cannon & Bowen, 1983; Ikeda & Chiang, 
1993) or at an undepleted delta-doped layer in a semi- 
conductor (Schubert, 1993) is generally characterized by 
the presence of a sheet of charged impurities or defects 
at the boundary and a broader distribution of oppositely 
charged free carders. According to Poisson's equation, 
such charge-density variations give rise to changes in 
electrostatic potential within a material that remains 
electrically neutral overall. This suggests that it should 
be possible to quantify charge distributions at space 
charge layers in the transmission electron microscope 
(TEM) by using analytical techniques that are sensitive 
to local differences in potential. In particular, phase- 
contrast techniques such as Fresnel contrast analysis, 
e.g. Ross & Stobbs (1991), and electron holography, 
e.g. Tonomura (1992), can be applied provided that 
all other contributions to the specimen potential at the 
boundary, such as changes in electron scattering factor 
and density, are either negligible or well characterized.i" 
The typical cross-sectional geometry required for TEM 
examination of a space charge layer is shown schemat- 
ically in Fig. 1. Lin, Ravikumar, Rodrigues, Wilcox & 
Dravid (1995) have reported electron holographic obser- 

i" Phase-contrast techniques are more sensitive to a local difference, 
AV, in the mean specimen potential than to its absolute value V0. 
Although V0 is affected by the presence of charged layers at specimen 
surfaces (O'Keeffe & Spence, 1994), it should be noted that the 
calculations presented here are equally applicable for determining the 
contribution to V0 from space charge or dipole layers on the specimen 
surfaces themselves. 
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vations of changes in potential with such origins at grain 
boundaries in Mn-doped SrTiO3, while Ikeda, Chiang, 
Garratt-Reed & Vander Sande (1993) have used the more 
indirect approach of measuring the total amount of A1, 
Ga and Nb segregating at grain boundaries in TiO 2 and 
inferring the corresponding boundary potentials. Dunin- 
Borkowski, Stobbs, Perovic & Wasilewski (1994) have 
shown that the magnitude of Fresnel contrast visible at 
delta-doped layers in specimens of Si and GaAs could 
not be accounted for by changes in composition, density 
or ionicity at the layers, but was consistent with the 
presence of space charge distributions. However, no 
work has yet been published on either the quantitative 
interpretation of the potential measured at a space charge 
layer or the sensitivity of the measured potential to the 
form of the original charge distributions. 

The aim of this paper is to illustrate how classical 
solutions of Poisson's equation can be used to relate a 
TEM-measured potential at a space charge layer to the 
charge distributions that are present. The contribution 
to the strain within the material, which results from 
the presence of the electric field associated with these 
charge distributions and can affect both diffraction and 
phase contrast in a TEM image, is also determined. 

Incident electron beam 

i ~ !~ i 'bo~' c~ge width db 
- ~  ' ' ',.6- 'free' charge width at/ 

x = O  

Fig. I. Schematic diagram showing the geometry of a cross-sectional 
TEM specimen containing a space charge layer. 
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All of the calculations of electric field, potential and 
force presented here are illustrated in graphical form 
for a hypothetical material, which has representative 
values for the widths and the densities of the charge 
distributions that are typically present at a space charge 
layer. In particular, the total charge number density 
chosen for this material corresponds to approximately 
10% of one atomic layer (were it all in a single sheet) 
in a typical semiconductor, which is the upper limit for 
electrically active dopant concentrations that have been 
reported in delta-doped layers. The details of the other 
parameters chosen are given below. 

For simplicity, the total charge density in the calcu- 
lations is specified as a superposition of one positive 
and one negative charge distribution and the effect 
on the potential of changing the form of each charge 
distribution is examined. This is of particular importance 
because the exponential dependence that is predicted 
for the decrease of the defect or solute charge density 
with distance from an interface, originally formulated 
for space charge layers at free surfaces, relies on the 
presence of an infinite source of charged defects at 
the boundary (Frenkel, 1946). This condition may not 
always be satisfied. For example, a Gaussian distribution 
is more representative of both the impurity diffusion 
profile and the form of the ground-state free carrier 
wavefunction in a delta-doped semiconductor (Ploog, 
Hauser & Fischer, 1988) and may also be a more 
appropriate description for the forms of charged solute 
distributions at certain types of grain boundary. 

In the present work, the effect of the 'fringing' 
fields outside a TEM foil of finite thickness is ig- 
nored. This effect has been investigated by Pozzi (1979) 
and Frabboni, Matteucci, Pozzi & Vanzi (1985) using 
Lorentz microscopy and electron holography and will 
be discussed in more detail in paper II of this series. It 
is also assumed that the electron beam does not modify 
the charge distribution within the specimen in any way, 
and for simplicity the material is treated as an isotropic 
continuum both electrically and mechanically 

2. The use of a classical electrostatic potential 

In high-energy electron diffraction (HEED), an incident 
electron is generally described using the steady-state 
solution of a time-independent Schrtidinger equation 
that includes relativistic values for the mass and the 
wavelength of the electron but ignores the effects of spin 
(Fujiwara, 1962; Hirsch, Howie, Nicholson, Pashley & 
Whelan, 1965). Exchange-correlation forces are ignored 
(Saldin & Spence, 1994) and contributions from virtual 
inelastic scattering have been shown to be negligible 
(Rez, 1978). Poisson's equation is then used to relate 
the Hartree potential within the specimen V(r) (which is 
positive with maxima at the atomic positions) directly 
to the ground-state charge density. We assume that the 
above assumptions are valid for the current problem 

and we also follow the approach of O'Keeffe & Spence 
(1994) in using classical electrostatics at distances that 
are of the order of interatomic spacings. Quantum- 
mechanical calculations of charge distributions at inter- 
layers are then only referred to in order to determine 
theoretical electrostatic potentials for comparison with 
experimentally measured potential profiles. 

It should be noted that the use of a continuum model 
to determine the local change in electrostatic potential 
and the stress at a space charge layer in a dielectric 
strictly requires the electric field to vary slowly over 
several atomic diameters. For example, both Finnis 
(1991) and Stoneham & Tasker (1987) have shown that 
a continuum approach is only valid to within about 
0.25 nm of a metal/ceramic interface. The continuum 
model is clearly pushed to the limit of its applicability 
in the present work and while the results are thus 
unlikely to be quantitatively exact for the narrowest 
charge distributions they are intended to be strongly 
indicative of the magnitudes and the directions of the 
effects that are reported. 

3. Charge, electric field, potential and 
force at an undepleted charged layer 

We describe a space charge layer in terms of a 'bound' 
charge distribution (usually consisting of solute atoms or 
vacancies) of density pb(x) and a wider 'free' charge dis- 
tribution of density p./(x), where Pb(X) and p x) are each 

(~he direction positive functions that vary only with x 
normal to the interface plane), are symmetrical about 
the centre of the layer (at x = 0) and for which the total 
charge density, f~,~[pb(x) -- p~x)]dx, is zero as a result 
of overall charge-neutrality. Fig. 2 shows examples of 
exponential and Gaussian distributions for both Pb(X) and 

~ x), which have widths (full widths at half-maximum) 
and d of 0.5 and 3.0nm, respectively, and total 

projecte~* charge number densities N2D of 1018 m -2. The 
magnitudes of these parameters correspond to represen- 
tative values for space charge layers (Schubert, 1993), 
with the value for N2D being equivalent to a charge 
number density of approximately 10% of one atomic 
layer in a semiconductor such as Si or GaAs. The charge 
distributions shown in Fig. 2 will be used to illustrate 
the effect of the form of the charge distribution on all 
subsequent calculations of the potential and the force at 
a space charge layer, and hence on the phase contrast 
that may be observed in the TEM. The analytical forms 
of all of the graphs are given in Table 1, with illustrative 
numerical values for some parameters in Table 2; these 
are intended for reference when measured potentials are 
related to charge distributions. 

For materials that are linear isotropic dielectrics, 
reductions in the Coulomb force caused by the electronic 

* This is the total charge number density in the positive and negative 
charge distributions, were each in a single sheet. 
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polarization of the medium are included by the use of 
a single dielectric constant e r and no further screening 
effects need be considered once the initial charge dis- 
tributions have been specified. It should be noted that 
for the solution of Poisson's equation V • D -- p(r) 
(where the electric flux density D = ~0Cr E and the 
electric field E = V x V), D does not in general depend 
merely on p(r) but also on the boundary conditions. In 
the absence of externally applied fields, and for a total 
charge of zero and a symmetrical charge distribution, 
the electric field associated with a layer of total charge 
density p ( x ) - - p b ( x ) -  pf(x) must tend to zero both at 
large distances from the interlayer and at its centre. 
Therefore, 

o O  

E(x) : ( -  1/~o~) f p(u) du 
x 

= (1/e0G) f p(u) du 
0 
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Fig .  2. E x a m p l e s  o f  (a )  i n d i v i d u a l  a n d  (b) to ta l  c h a r g e  d i s t r i b u t i o n s  at  

a s p a c e  c h a r g e  l aye r .  T h e  ' b o u n d '  a n d  ' f r e e '  c h a r g e  d i s t r i b u t i o n s  
s h o w n  h a v e  fu l l  w i d t h s  a t  h a l f - m a x i m u m  do a n d  d ;  o f  0 .5  a n d  

3 .0  n m ,  r e s p e c t i v e l y .  G a u s s i a n  a n d  e x p o n e n t i a l  c h a r g e  d i s t r i b u t i o n s  

a r e  s h o w n  u s i n g  s o l i d  a n d  b r o k e n  l ines ,  r e s p e c t i v e l y .  

and 

V(x) = j ' E ( v ) d v =  (1/e0er) fdv p(u)du, 
X I t ~ X  b l~O 

where V(-t-oo) = 0 and V(0) can also be written in the 
form of a dipole moment per unit area as 

O~ 

V ( 0 )  - - -  ( - - 1 / C O C r )  f up(u) du 
0 

(Landau & Lifshitz, 1960). Expressions for the field and 
potential obtained in this way are given in Table 2 for 
both exponential and Gaussian charge-density distribu- 
tions. The qualitative interpretation of the sense (the 
sign) of a TEM-measured potential is important and can 
be understood as follows. For an isolated atom, which 
corresponds to a localized region of positive charge and 
a wider distribution of negative charge, the spatially 
averaged potential is positive. Correspondingly, a space 
charge layer consisting of positive ions surrounded by 
negative free carriers will raise the value of V 0 and 
vice versa. Fig. 3 shows the calculated electric field 
and potential corresponding to the charge distributions 
shown in Fig. 2 for a material with a dielectric constant 
C r of 10. This value for the dielectric constant is again 
typical for a semiconductor such as Si or GaAs. Several 
important points are apparent from Fig. 3(b): 

(i) The magnitude of the change in potential is much 
greater than the detection limit of approximately 0.05 V 
for the measurement of potential variations that have 
widths of a few nm or less using Fresnel contrast analysis 
(Ross & Stobbs, 1991). According to the relations given 
in Table 2, this detection limit would suggest that a 
space charge layer can be detected using Fresnel contrast 
analysis if the parameter 

[N2o(df-db)]ler  

is greater than 1.6 x 10 7 and 7.7 x 10 6 m -1 for Gaussian 
and exponential charge distributions, respectively. For Si 
(e r = 11.9) with df - d b taking a value of 3 nm, the de- 
tection limits would correspond to total projected charge 
number densities of 0.9 and 0.4% of one atomic layer 
for space charge layers having Gaussian and exponential 
charge distributions, respectively. 

(ii) There is clearly a dramatic difference in both the 
magnitude V(0) and the width w 0 of the electrostatic 
potential at a space charge layer when the shapes of 
the original charge distributions are changed while the 
values of d ,  d and N 2 are held constant. The larger 

b f D 
potential is associated with a charge distribution that 
has a longer tail and this illustrates the extreme care 
that is necessary when relating a measured potential 
to an assumed form for the charge distributions. The 
same effect has been discussed by O'Keeffe & Spence 
(1994) and Davis et al. (1995) in the different context 
of relating the absolute magnitudes of mean forward- 
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Table 2. Numerical solutions for an isotropic material 
with parameters N2D = 10 is m -2, d b = 0.5, 
d f = 3 . 0 n m ,  e r = 1 0  and Y = 1 0 1 1 N m  -2, for both 

Gaussian and exponential charge distributions 

db and d; are the full widths at half-maximum of the bound and free 
charge distributions, respectively, N2o is the total projected positive or 
negative charge number density, e r is the dielectric constant and Y is 
Young's modulus. SI units have been used throughout. 

Forms of individual 
charge distributions Gaussian Exponential 

Potential at centre 0.77 1.6 
of layer (V) 

Width of potential (m) 1.6 x 10  -9  3.8 x 10  -9  

Maximum stress 2.9 × 107 2.6 x 107 
within crystal (N m -2) 

R i g i d  l a t t i c e  1.3 × 10 -13 2 .5  x 1 0  - 1 3  

expansion (m) 

scattering potentials to the extents of  electron-density 
distributions around individual atoms• 

(iii) The relations in Table 2 also indicate that for a 
given form of the charge distributions the magnitude of  
the potential V(0) is directly proportional to N2o(d f - db) 
and its width w is a function of d and d only The 0 f b " 
parameters d and N can thus be determined if a value f 2D 
for d b is either assumed or measured independently• 
In addition, for a delta-doped layer in a semiconductor 
that has a bound charge distribution of  width less than 
approximately 2 nm, a self-consistent solution of the 
Schr6dinger and Poisson equations indicates that the spa- 
tial extent of  the ground-state free-carrier wavefunction 
is 

Zo = 2(7/5)1/2 ( h2eoer ) 1/3 
\ 9 7 r ~ N z D  ' 

where m* is the free carrier effective mass (Schubert, 
1993). If this expression for Zo (which may also be valid 
for certain grain boundaries) can be related to dj then 
NZD, df and d b can all be determined from experimental 
measurements of  V 0 and w 0. 

The strain within a material is also an important 
parameter for the interpretation of  TEM contrast. The 
electrostatic contribution to the strain at a space charge 
layer results from electrostatic attraction of the 'bound' 
charge (the narrower charge distribution) to the 'free' 
charge (the wider charge distribution). A region of  
'bound' charge of  width dx at position x, containing net 
charge per unit area Pb(X) dr, experiences an electrostatic 
force per unit area of  magnitude 

dab(X ) = Pb(X)E(x) dr = [Pb(X)dX/eoer] ? p(u) du 
0 

[E(x) in this expression is associated with charges exter- 
nal to the layer being considered]. This contribution to 
the force is directed away from the centre of  the layer, 
is zero at its centre and always results in an expansion 
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of  the lattice (so long as dy > d b). The. bound charge is 
thus drawn out and the free charge m, since equalizing 
the two distributions would cancel the charge completely 
and so minimize the electrostatic energy per unit area, 

O O  

f 2'ix, 
- - O O  

at a value of  zero. The force per unit volume (i.e. the 
gradient of  the force per unit area) d % / d x  is plotted 
in Fig. 4(a) for the charge distributions in Fig. 2 and 
again for a material that has a dielectric constant e r of  
10. As long as the material is free to relax parallel to 
the interface, the contribution to the strain at each such 
position is thus 

O O  

e(x) = tr(x)/Y= ( l / Y )  f Pb(U)E(u)du, 
x 

where the maximum value of  the stress or(x) is ~r b at x = 
0, Y is Young's modulus and the material is assumed 

to be isotropic. The electrostatic contribution to the 
strain for the charge distribution shown in Fig. 2, for 
a material with representative values e~ of  10 and Y of  
101~ N m -2, is shown in Fig. 4(b) and is much more 
localized than the extent of  the electrostatic potential 
in Fig. 3. It is clear from Fig. 4(b) that the magnitude 
of  the strain is negligible when compared with the 
typical magnitudes of  strains that are associated with 
compositional fluctuations (i.e. changes in ionic radii) at 
a boundary and is too small to affect V 0 appreciably. 
However,  the total rigid lattice shift, A/to t , of  the crystal 
lattice across such a space charge layer is a parameter 
that can be measured accurately using the technique of  
regressional analysis (Stobbs, Wood & Smith, 1984). 
The magnitude of  the electrostatic contribution to A/to t is 

O O  O O  O O  

Al  = 2 f e ( x ) d x  = (2 /Y)  f dx f Pb(U)E(u)du. 
0 x = 0  u = x  
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distributions depicted in Fig. 2 for an isotropic material with a 
dielectric constant 8r of 10. A change in the direction of the 
electric field is shown using a change of sign. Gaussian and 
exponential charge distributions are shown using solid and broken 
lines, respectively. 
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(b) 
F i g .  4 .  Electrostatic contributions to (a) the force acting on the bound 

charge and (b) the strain within the material at a space charge layer 
for the charge distributions depicted i n  F i g .  2 and for an isotropic 
material with a dielectric constant ~r o f  10 and a Young's modulus Y 

of  1 0  I I  N m - 2 .  A c h a n g e  i n  the direction of  the force is shown using 
a change of  sign. Gaussian and exponential charge distributions are 
shown using solid and broken lines, respectively. 
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Values are given in Table 1 for the Gaussian and 
exponential charge distributions and the representative 
values of d b, df, N20, Y and c r chosen for the pre- 
vious calculations. The magnitude of this contribution 
to the rigid lattice shift, at approximately 10-13m for 
the parameters chosen, is also too small to be measured 
using regressional analysis, which has a detection limit 
of approximately 10 -12 m. 

4. Conclusions 

The electrostatic potential and strain at a space charge 
layer in an isotropic material have been determined using 
classical electrostatics. This will allow the magnitude 
and the width of a TEM-measured electrostatic potential 
to be related directly to the widths and the concentrations 
of the charge distributions within a material. The form 
of the charge distribution has been shown to affect 
the potential distribution strongly. Both the rigid lattice 
expansion and the strain associated with the presence 
of the charge distribution have been shown to be small. 
The relations presented here may also prove useful for 
explaining results obtained for charged layers using tech- 
niques such as scanning electron microscopy (Perovic et 
al., 1995), scanning tunnelling microscopy (Bonnell & 
Solomon, 1992) and X-ray diffraction (Fewster, 1993). 

We are grateful to Dr D. D. Perovic and Dr C. B. 
Boothroyd for discussions, and the EPSRC (RED) and 
the Isaac Newton Trust and Synoptics Ltd (WOS) for 
financial support. 
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